Extension Complexity of Stable Set Polytopes of Bipartite Graphs
نویسندگان
چکیده
The extension complexity xc(P ) of a polytope P is the minimum number of facets of a polytope that affinely projects to P . Let G be a bipartite graph with n vertices, m edges, and no isolated vertices. Let STAB(G) be the convex hull of the stable sets of G. Since G is perfect, it is easy to see that n 6 xc(STAB(G)) 6 n+m. We improve both of these bounds. For the upper bound, we show that xc(STAB(G)) is O( n 2 log n ), which is an improvement when G has quadratically many edges. For the lower bound, we prove that xc(STAB(G)) is Ω(n log n) when G is the incidence graph of a finite projective plane. We also provide examples where the obvious upper and lower bounds are both essentially tight.
منابع مشابه
On the linear extension complexity of stable set polytopes for perfect graphs
We study the linear extension complexity of stable set polytopes of perfect graphs. We make use of known structural results permitting to decompose perfect graphs into basic perfect graphs by means of two graph operations: 2-joins and skew partitions. Exploiting the link between extension complexity and the nonnegative rank of an associated slack matrix, we investigate the behavior of the exten...
متن کاملOn rank-perfect subclasses of near-bipartite graphs
Shepherd (1995) proved that the stable set polytopes of near-bipartite graphs are given by constraints associated with the complete join of antiwebs only. For antiwebs, the facet set reduces to rank constraints associated with single antiwebs by Wagler (2004b). We extend this result to a larger graph class, the complements of fuzzy circular interval graphs, recently introduced in Chudnovsky and...
متن کاملSome lower bounds for the $L$-intersection number of graphs
For a set of non-negative integers~$L$, the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots, l}$ to vertices $v$, such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$. The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...
متن کاملAntiwebs are rank-perfect
We discuss a nested collection of three superclasses of perfect graphs: near-perfect, rank-perfect, and weakly rank-perfect graphs. For that we start with the description of the stable set polytope for perfect graphs and allow stepwise more general facets for the stable set polytopes of the graphs in each superclass. Membership in those three classes indicates how far a graph is away from being...
متن کاملLinear Programming, the Simplex Algorithm and Simple Polytopes
In the first part of the paper we survey some far reaching applications of the basis facts of linear programming to the combinatorial theory of simple polytopes. In the second part we discuss some recent developments concurring the simplex algorithm. We describe sub-exponential randomized pivot roles and upper bounds on the diameter of graphs of polytopes.
متن کامل